

Computational Humanism

Fausto Giunchiglia Smart Society Final review meeting

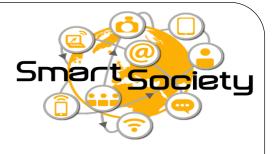
To be cited as: "Computational Humanism", Fausto Giunchiglia. Presentation at the final review meeting of the EC FP7 project "Smart Society". 06/01/2017. Material prepared together with Stuart Anderson. http://fausto.disi.unitn.it/r_online_presentations-html

"Man is the measure of all things: of the things that are, that they are, of the things that are not, that they are not."

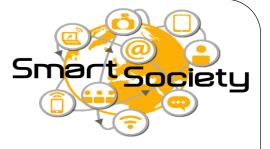
[Protagoras, VC B.C.]

- Ancient China
- Ancient Greece
- Renaissance (Italy)
- 19° 20° Century (Germany)
- Modern Humanism

- ...



Index


- 1. Premise: Artifacts and services
- 2. Empowering service provision
- 3. Empowering social relations
- 4. Service provision as social computation
- 5. Managing diversity
- 6. Challenges
 - a. Social computations
 - b. Managing diversity
- 7. Impact
- 8. Computational Humanism
- 9. Demo (video)

Humans

Humans live immersed in a space-temporal continuum where everything evolves. Their main abilities (as relevant in this context) are:

- a. Recognizing those patterns (substances) which repeat themselves in space and time, and this is not by accident [Millikan 2000, Giunchiglia & Fumagalli 2016]
- b. Organizing and giving structure to such patterns (as *substance concepts*) through language, thus providing the basis for understanding what is the case (true and false facts), i.e., by organizing their understanding of the space-temporal continuum in what we call *the world* [Giunchiglia & Fumagalli 2016, Giunchiglia & Fumagalli 2017]
- c. Acting in the world both *individually* and as members of *collectives*
- Reasoning about and exploiting what is the case in order to achieve their (life)
 objectives
- e. Adapting to what is the case when this was unpredicted or (even worse) was never seen before

Humans (continued)

Humans have intrinsic limitations:

- They have limited time and space extension
- b. They have limited perception capabilities (through sensing)
- c. They can memorize only so much data and knowledge
- d. They have limited processing and acting capabilities

Humans are highly diversified with more/less knowledge, skills and competence depending on the domain.



Artifacts

Historically, inventing and building artifacts which would substitute or facilitate humans in their activities has been (and still is) one the main means towards scaling beyond humans' intrinsic limitations and diversity.

Artifacts (often hugely) exceed the humans' capabilities. For instance,

- a. Passive artifacts facilitate some of their activities (e.g., bowl, house, weapon)
- b. Machines substitute humans in some of their activities (e.g., car, coffee machine, machine making, robot)
- c. Computers substitute humans in their abilities of recognizing, representing and reasoning about the world
- d. Computer networks facilitate humans in their ability of sending/receiving information to/ from anywhere in the world, which now happens in near-zero time

Collectives and services

Enabling *collectives* has been (and still is) another main means towards scaling beyond humans' *intrinsic limitations* and *diversity*.

Collectives are *enabled* by the *diversity of people*. People with diverse capabilities collectively help people in doing things they don't know how to do or that would find very hard to do.

Collectives have capabilities which are more than the sum of the capabilities of any single member.

Collectives are the main means for *service* provision. We identify a collective by the service to be delivered. A collective is the *set of people* which contribute the achievement of the service. Often not all the members of the collective know the service to be delivered but only some of its components.

Services

A *service* is an activity where an immaterial exchange of value occurs. Usually a service repeats itself in time according to some pattern.

A service can be seen as a **whole** or as **composed of simpler atomic services** which, in turn, can be further decomposed.

Service Provider is whatever (e.g., machines, objects, infrastructure, people) provides the service. **Service Consumer** is whatever (eg., machines, objects, infrastructure, people) is recipient of the service.

Most often the service provision:

- is enabled by physical resources (e.g., car for mobility, see UBER, apartment for rental, see RbnB), and/or
- *is organized and managed*, *in parts* (e.g., Uber and Rbnb) *or completely* (e.g., Facebook, Whatsapp) *by software*, and/or
- *is run by an organization* (e.g., any of the company above, but also utilities, transportation companies, Health organizations).

Services (cont.)

Sometimes the service provision is **provided solely by a person** (e.g., information provision, consulting, feeding).

In general, no matter what the service provider and the service consumer are (e.g., machines, objects, infrastructure, people), the ultimate service providers and consumers are people, i.e., the people controlling and managing whatever provides the service, and whatever consumes the service.

We take the *Service Provider* to be the *person* who ultimately provides the service and *Service Consumer* is the *person* who ultimately is recipient of the service.

Using *skill*, *ingenuity* and *experience*, service providers generate benefit to service consumers.

Index

- 1. Premise: Artifacts and services
- 2. Empowering service provision
- 3. Empowering social relations
- 4. Service provision as social computation
- 5. Managing diversity
- 6. Challenges
 - a. Social computations
 - b. Managing diversity
- 7. Impact
- 8. Computational Humanism
- 9. Demo (video)

Empowering service provision – to day

Access to services is mediated and mainly controlled *in the virtual world*. As a consequence, service access is extended, *in space and time*, to cover potentially all the *world*.

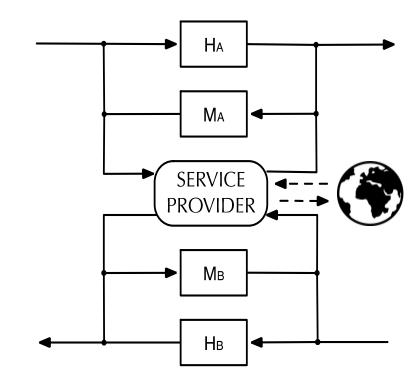
Examples:

- a. Uber: access to rides through the people who offer them;
- b. AirBnB: access to places to stay through the people who manage them;
- C. ...

Advantages:

- a. Enabling an easily accessible huge (often worldwide) space of possibilities;
- b. Going beyond humans' space and time limitations in service delivery;
- c. Overall, producing better personal and social performance
- d. ...

NOTE: we are not focusing on purely online services (e.g., email, Whatsapp, Facebook)


Empowering service provision – to day

HA, HB: Humans

MA, MB: *machines*

AirBnB, Uber, ...: examples of Service providers

The interaction HA – HB, via the service Provider SP is organized as follows:

- 1. HA SP agree on service provision
- 2. HB SP agree on service consuption
- 3. SP finalizes agreement between HA HB
- 4. HA delivers service to HB when they finally meet (in the real world)

NOTES:

- Access to the real world service is managed by SP
- 2. Steps 1-3 are in the virtual world, step 4 is in the real world

Empowering service provision – drawbacks

- XNo end-to-end interaction between people; nodirect interaction / negotiation. The person being «real» service provider is intermediated by the machine in the interaction with the persone being the «real» service consumer
- ×Inflexible service provision: platforms focus on a single service or a set of related services. The services to be provided are defined a priori and built-in as part of the service provision platform;
- ×Inflexible service negotiation: no awareness of the local (provider and consumer) context, e.g., of the people, goals, actions, and state, no flexibility in the service configuration, no flexibility in the aswers only yes/no answers;
- *Inflexible interaction protocol: no personalization of the interaction, no diversity awareness of, e.g., the people values, culture and language

Empowering service provision – drawbacks (cont.) Smert society

- × Inflexible service provision: service users manually choose which platform to connect to;
- × *Inflexible service negotiation*: service providers and service users manually negotiate the details of the sevice to be provided, and only through the protocols enabled b the platform;
- × *Inflexible interaction protocol*: service providers manually interact and decide how to interact based on the quality of the interaction so far.

Human intervention is needed at any relevant decision step. All the most «sensitive, mission critical» decisions are left to humans.

The human limitations in their ability to interact with other humans (sometimes humans off line, low speed processing, sequential processing) slow down immensely the process of service provision.

The rigid distinction of roles and the rigid boundary between humans and machines is the main bottle-neck for scaling service provision to the ability of solving (large scale) societal challenges. Humans and machines, both on the service provider and on the service consumer side, have reciprocally no knowledge of the other, of what it does, why it does it, how it does it.

Machines cannot help humans beyond what was originally designed and humans cannot help machines in helping humans

Index

- 1. Premise: Artifacts and services
- 2. Empowering service provision
- 3. Empowering social relations
- 4. Service provision as social computation
- 5. Managing diversity
- 6. Challenges
 - a. Social computations
 - b. Managing diversity
- 7. Impact
- 8. Computational Humanism
- 9. Demo (video)

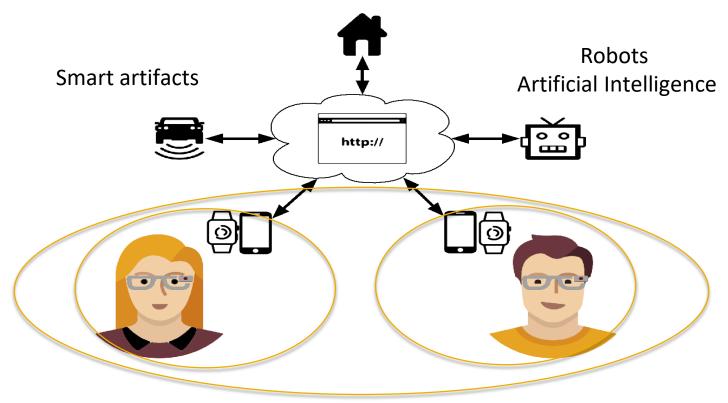
Social relations

We take a **social relation**, or **social interaction**, to be any relationship between two or more individuals. Social relations derived from **individual agency** form the basis of **social structure** and therefore of **society**.

In everyday life, not machine mediated, service provision, collectives are formed, operate and deliver their services because they are immersed and exploit a huge infrastructure of social relations. In turn, services are what enables the establishment and evolution in time of social relations. Social relations are what enables efficient service delivery by providing the service provider and consumer of the reciprocal knowledge of the other, of what she does, why she does it, how it does it.

In machine mediated service provision, services are provided without any support from social relations. All the missing information must be provided by humans. Service provider and service consumer have reciprocally no knowledge of the other, of what she does, why she does it, how she does it.

In machine mediated service provision, for services delivered in the Virtual world (e.g., email, Facebook, Whatsapp) new forms (of virtual) social relations are empowered (though never reaching the complexity and richness of the real world social relations).



The challenge - Empowering social relations

Smart environments

Artificial Intelligence A *model* which enables *people*, to develop *social relations*, and to enable reciprocal services beyond the human limitations (in time, space, processing, memory, service delivery and consumption, social relations).

A **technology** implementing the model which is always available to the user, 24 hours a day, irrespective of any contextual factor.

Machines do not substitute people. Machines empower their social relations

Empowering social relations

Service consumers/prosumers

 H_{Λ} HA, HB: Humans SERVICE MA, MB: machine **PROVIDER** H_{B}

Service providers/ prosumers

The interaction HA – HB, via the service Provider SP is organized as follows:

- 1. SP enables and supports social relations
- 2. MA and MB enable and support the service provision
- 3. HA SP agree on the service provided by SP
- 4. HB SP agree on the service provided by SP
- 5. HA HB directly negotiate and deliver, thourgh MA MB the service as supported by SP. The negotiation is end-to-end

NOTE: steps 1-3 are in the virtual world, step 4 is in the real world

The challenge – a person centric example

It is Monday morning. I am late for a meeting with a visitor from Spain. My PDA has already told (the PDA of) my assistant to notify the visitor. It has also agreed with (the PDA of) my postdoc that he would try to arrive at the meeting on time. (The PDA of) my postdoc has also provided the (PDA of the) Spanish visitor with the exact location of the meeting (buikding, floor, conference room). My meeting is now scheduled for half an hour later. My PDA has already adjusted the schedule for all the meetings of the day. He made sure I could go home at the same time: I have a dinner with my wife and some friends. I cannot be late.

At 3pm I have to have an exam at the Hospital. I got confirmation only to day. Because of this I need to have a very light lunch. My PDA agreed with the phisician the best time which could fit my schedule, it booked a light menu at the restaurant for 1pm and rescheduled the 3pm meeting for next week. The lunch will be with some students who requested an urgent meeting. It is the only time I have available to day.

I park my car in the best available parking lot. Among the ones immediately available it is the one midway between the restaurant, my office and the lab of the physician. It is slightly more expensive than the others. It is also a good way to make sure that I walk a high number of steps. My car has not been washed for 3 months, my PDA has booked a carwash during the parking time. It negotiated the best time among those available.

When arriving in the office I urgently need to talk to Luisa, the person in charge of our collaborations with India. The deadline for confirming their visit is 12Noon. I am calling her but I cannot find her. She is not on line. My PDA launches a person search by asking some mutual friends (and by asking them to ask to iterate the question). Finally, at 11:30 she calls me up an we solve the issue. She was away in a meeting with a friend who unexpectedly visited her.

And so on ...

The challenge – an example in health

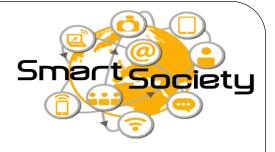
The Povo town council is struggling to provide integrate health and social care for its community because of difficulties in raising funds to support an adequate number of carers and make good use of the limited number of primary care doctors in the town. The citizens of Povo are also aware that many of their older people are living alone and suffer from lonliness. Together the council and the citizens decide thay need to make a Povo care collective that will co-produce health and care for the community. The collective will be a hybrid diversity aware Collective Adaptive System. The collective starts off by profiling the human and computing resources available in the community from the senior medical staff through to the chat systems in peoples house, their phones, IoT devices. This is a dynamic learning collective with people and computational resources entering and leaving the system all the time as more people volunteer or leave the region. The initial task of the collective is to understand what services people use and what they need

Key elements are identifying need for services

developing services

e.g. flexible friending service that involves bots, tele-interaction and face-to-face

as skill shortages are identified then people are encouraged to learn via interaction with machine and human resources and dvelop to provide reliable service


some economic analysis...

NEEDS REWOKI>NG SIMILAR TO PREVIOUS EXAMPLE

Index

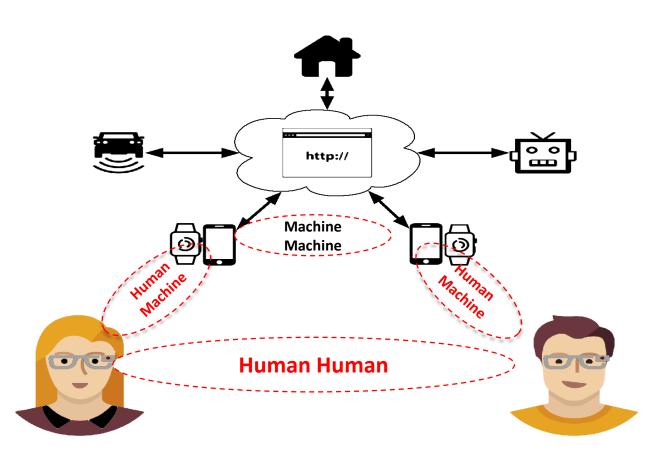
- 1. Premise: Artifacts and services
- 2. Empowering service provision
- 3. Empowering social relations
- 4. Service provision as social computation
- 5. Managing diversity
- 6. Challenges
 - a. Social computations
 - b. Managing diversity
- 7. Impact
- 8. Computational Humanism
- Demo (video)

Augmented Collectives

Augmented Collectives as the means for automating social relations as a key enabler of service provision

Augmented Collectives - The result of the convergence among humans whose collaboration capabilities are empowered by machines, with capabilities which are more than the sum of the capabilities of the original collectives and the single machines

In augmented collectives, *machines help humans*, *by automating social relations*, as required for service compositionality to be successful, allowing them to go *beyond* their physical limitations (e.g., spatio-temporal, computational, memory, interaction ...).


Augmented Collectives are collectives enabled by the diversity between machines and people.

A *person* is characterized by:

- 1. The set of services (s)he can exploit (service consumer) thanks to, e.g., her/ his PDA,
- 2. The set of services (s)he can provide (service provider) thanks to, e.g., her/ his PDA,
- 3. Her *social relations* as enabled by machines, which provide her with the ability to *expose/negotitate/compose with other people/the services* (s)he provides/exploits, *(social service prosumer)*.

The human compositionality is modeled as social relations and implemented as the composition of human machine machine compositionality

A three layer model of compositionality

- XLayer 1: Machine compositionality: extensively studied in mainstream CS. (Out of focus.)
- XLayer 2: *Human machine compositionality*: studied in Artificial Intelligence, HCI, Human Computation, Ubiquitous Computing, Focus on how machines can improve *human machine interactions*.
- XLayer 3: *Human compositionality:* studied in CSCW, workflow systems, social networks, social computing, crowdsourcing, Focus on how people can interact and collaborate towards better *service provision*.

Service provision as social computation

The role of *people*:

1. Deliver and exploit services (social service prosumers)

The role of *machines*:

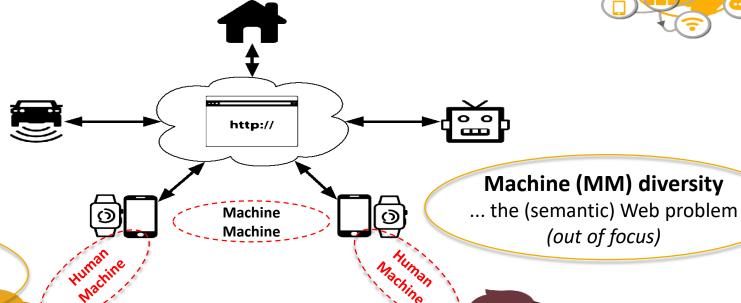
- 1. Acquire (partial) knowledge about the service to be provided (modeled as the "current" goal) and of state of affairs (the world, people, and the current collective) (property recognition);
- 2. Adapt the collective to deliver the service provision as a plan resulting from the composition of (atomic) services to be delivered by people (contextual privacy, search, provenance management, orchestration, incentive mechanisms);
- 3. Monitor the results of service provision, recognize them and detect the arousal of unexpected obstacles (anomaly recognition);
- 4. If an unexpected obstacle is detected, go to step 2

A **social computation is** a **sequence** of computation steps, as traced by the machine, where each **computation step** is the delivery of an (atomic) service, as performed by a person.

A computation step is modeled according to the plan semantics, as understood by the service prosumers, as a prerequisite for the compositionality of people actions

Index

- 1. Premise: Artifacts and services
- 2. Empowering service provision
- 3. Empowering social relations
- 4. Service provision as social computation
- 5. Managing diversity
- 6. Challenges
 - a. Social computations
 - b. Managing diversity
- 7. Impact
- 8. Computational Humanism
- 9. Demo (video)


Diversity in an Open World (e.g., the real world)

Partial incomplete/incorrect models of reality

Human machine (HM) diversity (Hibridity)

... the (extended) Semantic Gap problem

Unexpectedadiversity

Human (HH) diversity

... Culture, Language, goals, activities, emotions, values, ...
So far mainly studied in the humanities
No general computational theories of human diversity

Unexpected diversity as the cause of a failure in the automation of service provision.

- × **Collectives** When having a role in a collective, humans help humans, by providing diversified services, as required by their role, the former allowing the latter to go beyond their limitations (in knowledge, skills and capabilities).
 - X Unexpected world diversity may cause the failure of the service provided by a person
- × Augmented collectives When having a role in an augmented collective, machines help humans, by automating their interactions with other humans, as required for service compositinality to be successful, allowing them to go beyond their physical limitations (e.g., spatio-temporal, computational, memory, ...).
 - ➤ Unexpected people diversity may cause the failure of the machine automation of people interactions

The **composition of the effects of an unexpected obstacle in the world** (world diversity) **with those of an unexpected obstacle in the people interactions** (people diversity) may cause the failure of an augmented collective in reaching its objectives.

Recognizing and Adapting to Unexpected Diversity

Adaptability as the means for enabling the automation of service provision in presence of **unexpected diversity**, once **recognized**.

- × Collectives (Unexpected) world diversity may cause the failure of the service provided by a person
 - Machines help humans by recognizing failures in the service provision, and by adapting the collective in a way to deliver successful service provision in presence of the unexpected obstacles.
- × **Augmented Collectives** (Unexpected) **people diversity** may cause the failure of the machine automation of an interaction among people
 - Machines help humans by recognizing failures in the (automated) interaction strategy, and by adapting the collective in a way to deliver successful service provision in presence of the unexpected obstacles.

Adaptability to the world and people unexpected diversity is realized via the emergence of the most suitable service provision and Augmented Collective.

Index

- 1. Premise: Artifacts and services
- 2. Empowering service provision
- 3. Empowering social relations
- 4. Service provision as social computation
- 5. Managing diversity
- 6. Challenges
 - a. Social computations
 - b. Managing diversity
- 7. Impact
- 8. Computational Humanism
- 9. Demo (video)

Challenges

Social computation

- × computation models
- ×Governance models
- ×languages for social computation [Elephant 2000]
- ×Run-time environments (completion validation)

Diversity

- ×Modelling diversity
- ×Recognizing diversity
- ×Adapting to diversity

The dimensions of diversity

Smart society

Computer autonomy / automation

User feedback on semantics

Complexity of recognition

Person Values

Person Goals

Person Plans

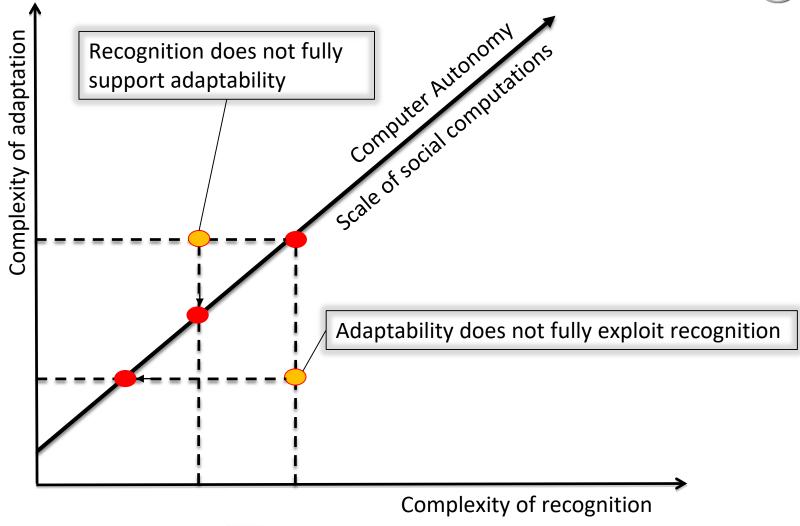
Person Activities

World State

alues

Complexity of adaptation

User involvement in decision making


Computer autonomy / automation

Automation of social computations

Automation of social computations (cont.) Smart society of adaptation **Towards a Smarter Society** Complexity **Translation Emotion recognition** Social context recognition Complexity of recognition

Index

- 1. Premise: Artifacts and services
- 2. Empowering service provision
- 3. Empowering social relations
- 4. Service provision as social computation
- 5. Managing diversity
- 6. Challenges
 - a. Social computations
 - b. Managing diversity
- 7. Impact
- 8. Computational Humanism
- 9. Demo (video)

Societal challenges – Scaling over machine intelligence

Fixed Diversity

Social control of healthcare and disease (Rare Diseases)

Social response to emergences and crime

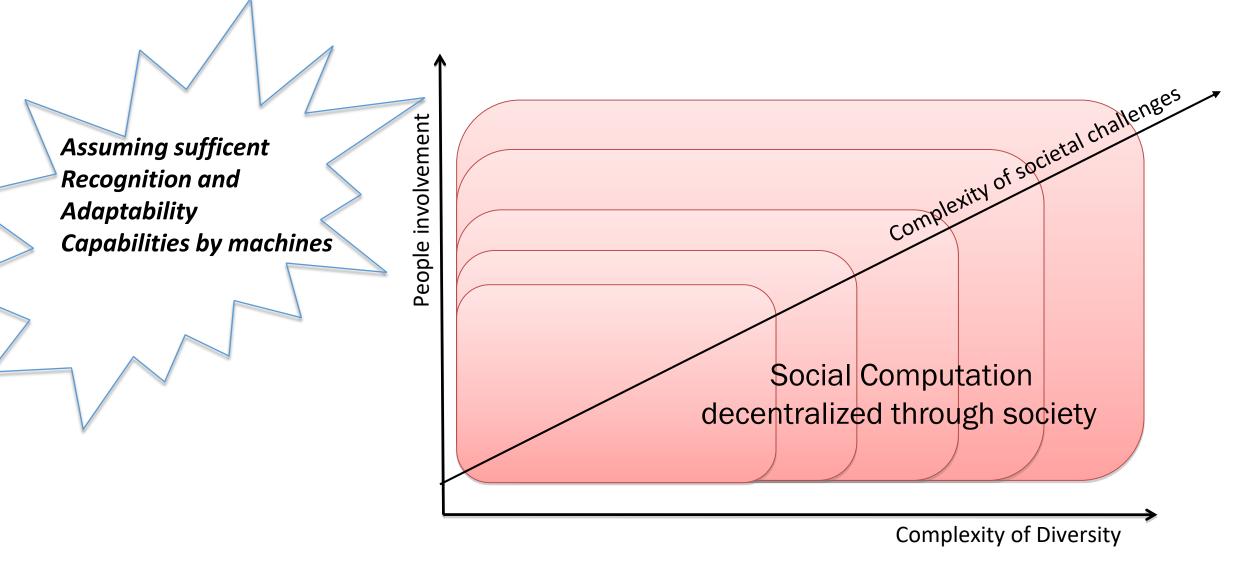
Social Computation decentralized through society

 Small, direct local impact magnified when replicated across global society Huge, potential global impact thanks to a social infrastructure needed to harness small social computations

Social Computing

Crowdsourcing

Workflows


Complexity of recognition

Semantic Web

of adaptability

Complexity

Societal challenges – Scaling over diversity

Long term Impact

B2B2C Paradigm - a new generation of Services:

- × From multi-channel mono-directional service provision ...
- × ... to end-to-end multi-directional social service provision

Potential huge improvement of the *quality of service provision*

- Scale (space, people)
- Time of delivery
- 3. Customization
- 4. Personalization
- 5. All service sectors (financial, education, transportation, retail, media, health/well-being, ...)

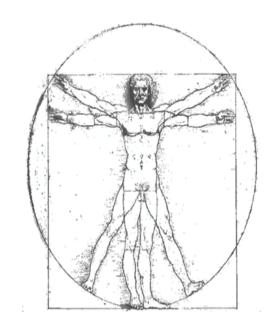
Service innovation as the means to Societal Innovation.

Augmented Collectives and Artificial Intelligence

- The ultimate success of Artificial Intelligence would be to build a machine whose Intelligence equals or exceeds human intelligence.
- The ultimate success of Augmented
 Collectives would be to make it possible
 for everybody to exploit, when trying to
 achieve her objectives, the best
 expertise available in the planet. Each
 person would be augmented with all the
 knowledge available in the world.

Index

- 1. Premise: Artifacts and services
- 2. Empowering service provision
- 3. Empowering social relations
- 4. Service provision as social computation
- 5. Managing diversity
- 6. Challenges
 - a. Social computations
 - b. Managing diversity
- 7. Impact
- 8. Computational Humanism
- 9. Demo (video)



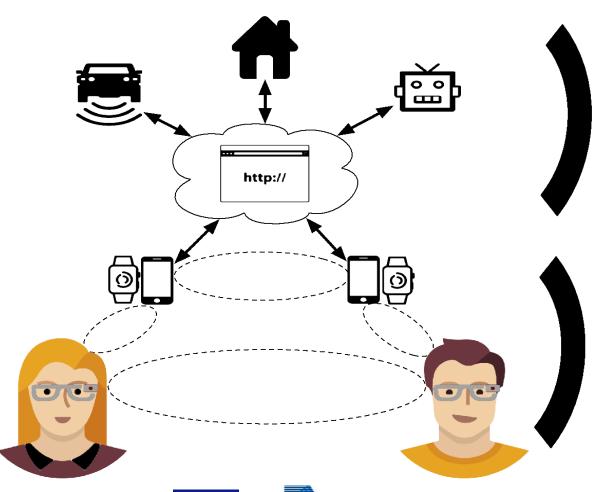
Computational humanism

Humans at the core of our studies as the way to guide the technology development towards scaling **collective intelligence**

New discipline, resulting from the convergence of

- Humanities, providing the knowledge of the human behaviour
- Computer Science, providing the methodology for the development of computational models of the human behaviour

Dual approach


- Engineering: develop systems which will realize the socio-digital Society
- Science: use the big data generated by running the systems to study the socio-digital society

From Computer Science to Computational Humanism

COMPUTER SCIENCE AS ENGINEERING

COMPUTER SCIENCE AS COMPUTATIONAL HUMANISM

THANK YOU!

Fausto Giunchiglia

